Machine Learning Models for Prediction of Soil Properties in the Riparian Forests
نویسندگان
چکیده
Spatial variability of soil properties is a critical factor for the planning, management, and exploitation resources. Thus, use different digital mapping models to provide accuracy plays crucial role in providing physicochemical maps. Soil spatial forest stands not well-known Iran. Meanwhile, riparian buffers are important several services such as high water quality, nutrient recycling, buffering agricultural production. Accordingly, this research, 103 samples were taken using Latin hypercubic method Maroon Behbahan lands vicinity evaluate nitrogen, potassium, organic carbon, C:N ratio, pH, calcium carbonate, sand, silt, clay, bulk density. Different machine learning models, including artificial neural networks, random forest, cubist regression tree, k-nearest neighbor used compare estimation properties. Moreover, three main sources information remote sensing images, elevation model, climate parameters ancillary data. Our results indicated that model has best estimating In contrast, tree phosphorous, clay. Further, networks showed silt contents. revealed geospatial terrain parameters, satellite images could be well data physiochemical forests lands. conclusion, specific needs each property highly accurate maps with less error.
منابع مشابه
study of cohesive devices in the textbook of english for the students of apsychology by rastegarpour
this study investigates the cohesive devices used in the textbook of english for the students of psychology. the research questions and hypotheses in the present study are based on what frequency and distribution of grammatical and lexical cohesive devices are. then, to answer the questions all grammatical and lexical cohesive devices in reading comprehension passages from 6 units of 21units th...
Effects of sedimentation on soil nutrient dynamics in riparian forests.
The influence of sedimentation rates on biogeochemistry of riparian forests was studied near ephemeral streams at Fort Benning, GA. Upper reaches of seven ephemeral streams had received varying rates of sedimentation stemming from erosion along unpaved roadways at the military installation. Two reference catchments were also included in the study. Decomposition of foliar litter, microbial C and...
متن کاملmodification of nanoclay for improving the physico-mechanical properties of dental adhesives
هدف اصلی این مطالعه تهیه یک سامانه نوین چسب عاجی دندانی بر پایه نانورس پیوند شده با پلی متاکریلیک اسید، نانورس پیوند شده با پلی اکریلیک اسید، مخلوط نانوسیلیکا و نانورس پیوند شده با پلی متاکریلیک اسید، مخلوط نانوسیلیکا و نانورس پیوند شده با پلی اکریلیک اسید و نانورس پیوند شده با کیتوسان اصلاح شده با گلایسیدیل متاکریلات است. پیوند پلی متاکریلیک اسید و پلی اکریلیک اسید بر ری سطح نانورس در حضور و ...
Thermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning
Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...
متن کاملthe application of multivariate probit models for conditional claim-types (the case study of iranian car insurance industry)
هدف اصلی نرخ گذاری بیمه ای تعیین نرخ عادلانه و منطقی از دیدگاه بیمه گر و بیمه گذار است. تعین نرخ یکی از مهم ترین مسایلی است که شرکتهای بیمه با آن روبرو هستند، زیرا تعیین نرخ اصلی ترین عامل در رقابت بین شرکتها است. برای تعیین حق بیمه ابتدا می باید مقدار مورد انتظار ادعای خسارت برای هر قرارداد بیمه را برآورد کرد. روش عمومی مدل سازی خسارتهای عملیاتی در نظر گرفتن تواتر و شدت خسارتها می باشد. اگر شر...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Land
سال: 2022
ISSN: ['2073-445X']
DOI: https://doi.org/10.3390/land12010032